The Application of Hyperspectral Sensing Data for Seabed Classification in the Coastal Area of Korea
نویسندگان
چکیده
Seabed classification is the important part of current coastal research because it characterizes the seabed and its habitats. Seabed characterization makes the link between the classified area and the physical, geological, chemical or biological properties of seabed. This paper addresses the possibilities of the use of airborne hyperspectral sensing with a CASI-1500 sensor to map the seabed covers in the coastal area of Korea. After radiometric, geometric and atmospheric correction for the raw hyperspectral data, the classification was performed in three steps. Firstly, fourteen classes of seabed were identified using a unsupervised spectral angle mapping algorithm in combination with data collected by ground survey. Secondly, seabed mapping was performed for each class separately. Finally, an accuracy assessment of the seabed mapping results was performed using data from ground survey. The overall accuracy was 83% with a kappa coefficient of 0.76. The results indicated that the hyperspectral sensing can help not only to classify the seabed material remotely and precisely, but also to construct the continuous geographical information for an effective management and conservation of the coastal area in Korea.
منابع مشابه
Sub-pixel classification of hydrothermal alteration zones using a kernel-based method and hyperspectral data; A case study of Sarcheshmeh Porphyry Copper Mine and surrounding area, Kerman, Iran
Remote sensing image analysis can be carried out at the per-pixel (hard) and sub-pixel (soft) scales. The former refers to the purity of image pixels, while the latter refers to the mixed spectra resulting from all objects composing of the image pixels. The spectral unmixing methods have been developed to decompose mixed spectra. Data-driven unmixing algorithms utilize the reference data called...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملHigh performance of the support vector machine in classifying hyperspectral data using a limited dataset
To prospect mineral deposits at regional scale, recognition and classification of hydrothermal alteration zones using remote sensing data is a popular strategy. Due to the large number of spectral bands, classification of the hyperspectral data may be negatively affected by the Hughes phenomenon. A practical way to handle the Hughes problem is preparing a lot of training samples until the size ...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014